УДК 537.591.15

РЕКОНСТРУКЦИЯ СПЕКТРА ВСЕХ ЯДЕР И ИССЛЕДОВАНИЕ ЯДЕРНОГО СОСТАВА ПКЛ В ЭКСПЕРИМЕНТЕ СФЕРА

© 2013 г. Р. А. Антонов¹, С. П. Бесшапов², Е. А. Бонвеч¹, В. И. Галкин⁴, Т. А. Джатдоев¹, Н. Н. Кабанова², А. С. Петкун², Д. А. Подгрудков⁴, Т. М. Роганова¹, Т. И. Сысоева², Мир. Фингер³, Мих. Фингер³, Д. В. Чернов¹, С. Б. Шаулов²

*E-mail: timur1606@gmail.com

Представлены предварительные результаты реконструкции спектра и исследования ядерного состава первичных космических лучей (ПКЛ) сверхвысоких энергий по данным аэростатного эксперимента СФЕРА-2, регистрирующего излучение Вавилова–Черенкова широких атмосферных ливней (ШАЛ), отраженное от снежной поверхности. Исследованы несколько источников систематических и методических погрешностей измеренного спектра ПКЛ в области энергий $10^{16}-5 \cdot 10^{17}$ эВ. Методика разделения групп ядер космических лучей основана на использовании параметра наклона функции пространственного распределения (ФПР) излучения Вавилова-Черенкова ШАЛ. В рамках сделанных модельных предположений получена предварительная оценка доли легких ядер в составе ПКЛ в области энергий $3 \cdot 10^{16}-1.5 \cdot 10^{17}$ эВ, которая составляет $21 \pm 11\%$.

DOI: 10.7868/S0367676513110069

ВВЕДЕНИЕ

Несмотря на более чем 50-летнюю историю развития методики измерения спектра космических лучей в области сверхвысоких энергий (>10¹⁵ эВ = 1 ПэВ), в настоящее время все еще сохраняется существенная неопределенность формы спектра всех ядер (сводка результатов сравнительно недавних экспериментов приводится в [1], рис. 15). Отличие результатов некоторых экспериментов весьма значительно по абсолютной величине и выходит за рамки заявленных статистических неопределенностей.

Например, спектр всех ядер, зарегистрированный в эксперименте GAMMA [2], имеет статистически значимый (более 4σ) острый пик при энергии $8 \cdot 10^{16}$ эВ. Похожая особенность существует в спектре сезона 2009—2010 гг. экспозиции установки Тунка-133 [3, 4], но она не была подтверждена в спектре сезона 2010—2011 гг. экспозиции того же эксперимента [4]. Также упомянутый пик не был обнаружен в работах других коллективов: Аkeno [5], Tibet-III [6] и KASCADE-Grande [7, 8].

Ситуация с исследованием состава ПКЛ при сверхвысоких энергиях еще более неопределенная, так как согласие между многочисленными результатами, такими, как [9–12], практически отсутствует (сводка результатов приводится, например, в [13], рис. 1). В более современном обзоре [14] утверждается, что энергетическая зависимость величины $\langle \ln A \rangle$ (среднего логарифма массового числа), измеренного различными экспериментами, все же согласуется с тенденцией роста $\langle \ln A \rangle$ в области энергий >3–4 ПэВ, где спектр ПКЛ имеет излом, так называемое "колено" [15]. Однако разброс измеренных значений $\langle \ln A \rangle$ велик, и, кроме того, для сравнения с моделями

Рис. 1. Спектр всех ядер ПКЛ по данным 2011–2012 гг. экспозиции эксперимента СФЕРА-2 (изображен звездами; предварительный результат), его статистические и систематические погрешности, а также результаты экспериментов Akeno [5] (кружки), KASCADE-Grande [8] (треугольники) и Тунка-133 [28] (квадраты).

¹ Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова.

² Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук, Москва.

³ Карлов Университет, Прага, Чехия.

⁴ Физический факультет МГУ имени М.В. Ломоносова.

ускорения и распространения ПКЛ необходима более детальная информация.

Эти примеры показывают необходимость продолжения исследований спектра и состава космических лучей сверхвысоких энергий различными методами. В настоящей работе представлены первые результаты такого исследования, проведенного на основании данных эксперимента СФЕРА. СФЕРА-2 — это черенковский телескоп, поднятый над заснеженной поверхностью озера Байкал и регистрирующий оптическое излучение Вавилова-Черенкова ("черенковский свет", ЧС) ШАЛ. Принципиальная схема такого метода исследования космических лучей сверхвысоких энергий была предложена в [16].

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Детектор СФЕРА-2 имеет мозаику из 109 ФЭУ-84-3, которая регистрирует световой сигнал, проходящий через апертурную диафрагму диаметром 930 мм и отраженный от сферического зеркала с радиусом кривизны 940 мм и диаметром 1500 мм. Типичная высота расположения детектора над уровнем снежной поверхности — 400—900 м. Для настоящей работы использованы данные, набранные в 2011—2012 гг. экспозиции. В 2011 г. период оцифровки сигнала составлял 25 нс, в 2012 г. — 12.5 нс. Более детальное описание эксперимента СФЕРА-2 приводится в [17], современное его состояние описано в [18].

В четырех полетах, проведенных в 2011 г., было обнаружено 230 событий, классифицированных как черенковский сигнал от ШАЛ; для первых четырех полетов 2012 г., использованных в настоящей работе, число таких событий, отобранных для дальнейшей обработки, составляет 301. Небольшое, по сравнению с наземными экспериментами, количество событий объясняется высоким порогом регистрации для наблюдения отраженного черенковского света ШАЛ, поскольку в среднем только 1 из ~10⁶ черенковских фотонов, отраженных от поверхности снега, попадает на зеркало детектора.

МЕТОД РЕКОНСТРУКЦИИ СПЕКТРА ВСЕХ ЯДЕР И СОСТАВА ПКЛ

Для восстановления спектра космических лучей и исследования ядерного состава ПКЛ в настоящей работе применен подход, основанный на статистическом моделировании отклика детектора на ливни от первичных ядер с различным массовым числом, энергией и зенитным углом. Процесс реконструкции спектра всех ядер состоял из нескольких этапов.

1. На первом шаге расчета было проведено полное прямое моделирование функции пространственного распределения черенковского света (ФПР ЧС) ШАЛ, а также временной структуры выборки ливней методом Монте-Карло с использованием стандартного пакета программ CORSIKA 6.500 [19] (более подробное описание процесса расчета приведено в [20–22]). Все результаты, представленные в настоящей работе, получены с использованием модели ядро-ядерного взаимодействия QGSJET-I для высоких энергий [23] и GHEISHA для низких энергий [24].

2. На втором этапе производился учет геометрических и оптических эффектов, искажающих сигнал. При этом было использовано более 10³ модельных ливней, полученных на предыдущем шаге расчета, для каждого из которых, в свою очередь, проведено моделирование от 30 до 100 откликов детектора, различающихся координатами оси ливней. Для случая реконструкции данных 2011 г. применялась упрощенная версия модели отклика детектора, описанная в [21, 22] и реализованная на языке C++. Анализ данных 2012 г. проведен с использованием стандартного пакета программ Geant4 [25].

3. С учетом меняющихся в ходе полета условий наблюдения проведено моделирование эффективного геометрического фактора регистрации ливней. Результат этого расчета особенно чувствителен к изменению высоты расположения детектора над уровнем снежной поверхности, а также вариациям порогов срабатывания его измерительных каналов.

4. По выборке ШАЛ, зарегистрированных в эксперименте, была восстановлена энергия первичных ядер. При этом использован метод оценки, в котором эта величина измеряется одновременно с реконструкцией положения оси ливня путем нормировки ФПР экспериментальных событий на модельные ФПР с известной энергией [26].

5. Наконец, на основании выборки оцененных энергий зарегистрированных ливней и модели эффективного геометрического фактора проводилась реконструкция спектра космических лучей сверхвысоких энергий. Восстановление формы спектра производилось путем моделирования распределения ливней по энергии с последующим сравнением этого распределения с экспериментальным. Высокий энергетический порог регистрации ливней (см. разд. 2) приводит к возникновению зависимости спектра всех ядер ПКЛ от состава в области энергий < 30 ПэВ. Для реконструкции формы спектра в этой ("пороговой") области применялся подход, основанный на оценке доли легких ядер в общей массе космических лучей в зависимости от энергии.

Методика исследования ядерного состава ПКЛ в настоящей работе основана на использовании параметра наклона ФПР ЧС ШАЛ, равного отношению количества зарегистрированных фотонов в круге с центром, совпадающим с осью ливня и радиусом 67 м, к той же величине в кон-

Рис. 2. Зависимость доли легких ядер f от десятичного логарифма энергии по данным 2012 г. экспозиции эксперимента СФЕРА-2 (кружки) и статистические погрешности этой величины. Ломаными линиями показан характерный размер методической погрешности оценки f (подробности в тексте). Стрелками изображена дополнительная неопределенность, возникающая в области сравнительно низких энергий за счет пороговых эффектов.

центрическом кольце с радиусами 67 и 134 м [21]. В работах [21, 22] было показано, что этот параметр позволяет выделять часть сравнительно легких ядер из общей массы ПКЛ, при этом примесь тяжелых ядер в конечной выборке составляет не более 1–2%. В настоящей работе в качестве представителей группы легких ядер выступают протоны, а тяжелых – ядра железа.

ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

Спектр всех ядер ПКЛ, восстановленный по данным 2011-2012 гг. экспозиции эксперимента СФЕРА-2, изображен на рис. 1 звездами. Также на рисунке приведены статистические и систематические погрешности измеренного спектра (последние обозначены сплошными ломаными линиями). При этом учитывалось несколько основных источников систематических погрешностей спектра: 1) миграция событий между энергетическими бинами (доминирует при энергиях >20 ПэВ); 2) погрешность расчета геометрического фактора (ее величина не превышает 5%); 3) зависимость формы спектра от состава ПКЛ (доминирует при энергиях <20 ПэВ); 4) дискретность энергии модельных событий; 5) неопределенность оценки зенитного угла ливней (двумя последними источниками погрешности можно пренебречь). В целом методика реконструкции спектра в настоящей работе испытала значительное развитие по сравнению с

экспериментом-предшественником [27]. Для сравнения показаны также результаты экспериментов Akeno [5] (кружки), KASCADE-Grande [8] (треугольники) и Тунка-133 [28] (квадраты). Статистические погрешности спектра Akeno сравнимы с диаметром маркера; систематические погрешности спектра KASCADE-Grande изображены штриховыми линиями.

Зависимость оцененной доли легких ядер f в общей массе ПКЛ от десятичного логарифма энергии по данным 2012 г. экспозиции эксперимента СФЕРА-2 представлена на рис. 2. Восстановленное относительное содержание легких ядер изображено кружками, показаны также статистические погрешности этой величины. Было проведено несколько независимых попыток реконструкции ФПР ливней с последующим восстановлением зависимости $f(\lg E)$, что позволило провести оценку методической погрешности (она показана на рис. 2 ломаными линиями). Значение f в двух первых бинах по энергии искажается пороговыми эффектами; характерная величина дополнительной неопределенности, возникающей в этом случае, изображена на рисунке стрелками. По данным, представленным на рис. 2, была проведена оценка доли легких ядер в составе ПКЛ с энергией 30–150 ПэВ, которая составляет 21 ± 11%. Этой величине соответствует значение $\langle \ln A \rangle = 3.20 \pm 0.45$ (если "тяжелыми ядрами" являются ядра кремния, значение $\langle \ln A \rangle =$ $= 2.65 \pm 0.37$, а в случае азота 2.10 ± 0.30). Значения $\langle \ln A \rangle$ от 2 до 3 в рассматриваемой области энергий не противоречат выводам [14] (см. рис. 17 в этой работе).

В настоящее время проводится уточнение представленных результатов, а также поиск и более детальное исследование систематических погрешностей, которые могут искажать величины, графики которых изображены на рис. 1, 2, поэтому все упомянутые результаты предварительные.

ЗАКЛЮЧЕНИЕ

В настоящей работе проведена наиболее детальная на данный момент реконструкция спектра всех ядер космических лучей с помощью отраженного от снега черенковского света ШАЛ и впервые было проведено исследование состава ПКЛ сверхвысоких энергий этим методом. Для анализа экспериментальных данных использовалась выборка модельных ливней значительного объема, полученная в результате полного статистического моделирования, что позволяет наиболее корректно описывать флуктуации развития ШАЛ. В процессе восстановления спектра всех ядер учитывалась зависимость формы спектра от состава ПКЛ в пороговой области. Была проведена оценка доли легких ядер в составе ПКЛ в области энергий $3 \cdot 10^{16} - 1.5 \cdot 10^{17}$ эВ, которая составляет $21 \pm 11\%$. Все упомянутые результаты являются предварительными и подлежат дальнейшей проверке и уточнению.

В заключение отметим, что использованная методика исследования спектра и состава космических лучей сверхвысоких энергий может оказаться полезной при обработке следующего поколения экспериментов, способных регистрировать черенковский свет ШАЛ, отраженный от естественных поверхностей, в том числе при анализе данных космических детекторов, таких как ТУС [29] и JEM-EUSO [30].

Работа выполнена при поддержке РФФИ (гранты № 11-02-01475-а, 12-02-10015-к, LSS-871.2012.2) и программы фундаментальных исследований президиума Академии наук РФ "Фундаментальные свойства материи и астрофизика". Авторы благодарят технических сотрудников эксперимента СФЕРА-2, обеспечивших подъем аэростата в ходе экспедиций на озере Байкал. Расчет эффективного геометрического фактора регистрации ливней проведен с использованием вычислительного кластера НИИЯФ МГУ. Работа Т.А. Джатдоева поддержана стипендией Ученого Совета МГУ для молодых преподавателей и научных сотрудников.

СПИСОК ЛИТЕРАТУРЫ

- 1. Abbasi R. et al. // Astropart. Phys. 2012. V. 42. P. 15.
- 2. Garyaka A.P. et al. // J. Phys. G. 2008. V. 35. ID. 115201.
- 3. Antokhonov B.V. et al. // Proc. Sci. Texas. 2010. P. 138.
- 4. Berezhnev S.F. et al. // NIMA. 2012. V. 692. P. 98.
- 5. Nagano M. et al. // J. Phys. G. 1992. V. 18. P. 423.
- 6. *Amenomori M. et al.* // Astrophys. J. 2008. V. 678. P. 1165.
- 7. Apel W.D. et al. // Phys. Rev. Lett. 2011. V. 107. ID. 171104.
- 8. Apel W.D. et al. // Astropart. Phys. 2012. V. 36. P. 183.
- 9. Antoni T. et al. // Astropart. Phys. 2005. V. 24. P. 1.
- 10. Fowler J.W. et al. // Astropart. Phys. 2001. V. 15. P. 49.
- 11. Chernov D.V. et al. // IJMPA. 2005. V. 20. P. 6799.

- 12. Tokuno H. et al. // Astropart. Phys. 2008. V. 29. P. 453.
- *Tsunesada Y. et al.* // Proc. 30th ICRC. Merida. 2008. V. 4. P. 127.
- 14. *Kampert K.-H., Unger M.* // Astropart. Phys. 2012. V. 35. P. 660.
- 15. Куликов Г.В., Христиансен Г.Б. // ЖЭТФ. 1958. Т. 35. С. 635.
- Чудаков А.Е. // Экспериментальные методы исследования космических лучей сверхвысоких энергий: Матер. Всесоюз. симп. Якутск, 1974. С. 69.
- 17. Антонов Р.А., Бесшапов С.П., Бонвеч Б.А. и др. // Изв. РАН. Сер. физ. 2011. Т. 75. № 6. С. 923; Antonov R.A., Besshapov S.P., Bonvech E.A. et al. // Bull. Russ. Acad. Sci.: Physics. 2011. V. 75. № 6. Р. 872.
- Antonov R.A. et al. // J. Phys. Conf. Ser. 2013. V. 409. ID. 012094.
- 19. *Heck D. et al.* // Report FZKA 6019. Forschungszentrum Karlsruhe. 1998.
- 20. *Анохина А.М. и др.* // Краткие сообщения по физике ФИАН. 2009. № 5. С. 32.
- 21. Antonov R.A. et al. // Proc 31th ICRC. Lodz. 2009. HE. 1.3. ID. 434.
- 22. Джатдоев Т.А. Многомерные критерии для восстановления массового состава первичных космических лучей по характеристикам черенковского света ШАЛ: дис. ... канд. физ.-мат. наук. М.: НИИЯФ МГУ, 2011.
- 23. *Kalmykov N.N., Ostapchenko S.S., Pavlov A.I.* // Nucl. Phys. B. Proc. Suppl. 1997. V. 52. P. 17.
- 24. Fesefeldt H.C. // Technical Report PITHA 85-02. RWTH. 1985.
- 25. Agostinelli S. et al. // NIM A. 2003. V. 506. P. 250.
- Dedenko L.G. et al. // Nucl. Phys. B. Proc. Suppl. 2004. V. 136. P. 12.
- 27. *Antonov R.A. et al.* // Nucl. Phys. B. Proc. Suppl. 1997. V. 52. P. 182.
- 28. Berezhnev S.F. et al. // Proc. 32 ICRC. Beijing. 2011. V. 1. P. 197.
- 29. Шустова О.П., Калмыков Н.Н., Хренов Б.А. // Изв. РАН. Сер. физ. 2011. Т. 75. № 3. С. 410; Shustova O.P., Kalmykov N.N., Khrenov B.A. // Bull. Russ. Acad. Sci.: Physics. 2011. V. 75. № 3. Р. 381.
- Takahashi Y. JEM-EUSO Collaboration // New J. Phys. 2009. V. 11. ID. 065009.